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Various numerical methods are used in order to approximate the Kortewegde Vries 
equation, namely: (i) Zabusky-Kruskal scheme, (ii) hopscotch method, (iii) a scheme due to 
Goda, (iv) a proposed local scheme, (v) a proposed global scheme, (vi) a scheme suggested by 
Kruskal, (vii) split step Fourier method by Tappert, (viii) an improved split step Fourier 
method, and (ix) pseudospectral method by Fornberg and Whitham. Comparisons between 
our proposed scheme, which is developed using notions of the inverse scattering transform, 
and the other utilized schemes are obtained. 

1, INTRODUCTION 

The Korteweg-de Vries equation (KdV) introduced in [ 1 ] was originally derived in 
order to describe the behavior of one-dimensional shallow water waves with small but 
finite amplitudes. More recently, this equation also has been found to describe wave 
phenomena in plasma physics [2, 31, anharmonic crystals [4, 51 bubble-liquid 
mixtures [6, 71, etc. There has been great interest in this equation because of its 
special properties. A substantial review of this work can be found in [S, 91. Zabusky 
and Kruskal ]lO] discovered the concept of solitons localized waves with special 
interaction properties, while studying the results of a numerical computation 
(describing an anharmonic lattice) on the KdV equation. This motivated the work of 
Gardner et al. [ 1 l] and led to the explosion of both the theoretical and numerical 
work which is still growing today. Many analytical results are available for equations 
which exhibit exact multisoliton behavior, when an associated scattering problem can 
be found. Of course there are many examples of inexact, or quasi-soliton behavior. 
For these problems little or no analytical results are known and numerical studies are 
essential in order to develop an understanding of the phenomena. This work aims to 
compare a proposed scheme which was developed in paper I using notions of the 
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inverse scattering transform (IST) and certain other known numerical methods for the 
KdV equation 

uI + 6uu, + u,,, = 0. (1.1) 

These results can be extended to cover many other related equations as well. 
The following numerical methods are applied to the KdV equation: 

1. Finite difference methods. 
(a) Explicit methods. 

(i) Zabusky and Kruskal scheme [lo, 121. 

(b) Implicit methods. 

(i) Hopscotch method 1131. 

(ii) A scheme due to Goda [14]. 

(iii) The proposed scheme [ 1.51. 

(iv) A scheme suggested by M. Kruskal [ 161. 

2. Finite Fourier transform or pseudospectral methods. 

(i) Split step Fourier method introduced by Tappert [ 171. 

(ii) Pseudospectral method introduced by Fornberg and Whitham [18]. 

As in paper II in order to compare schemes, our approach for comparison is to (a) 
fix the accuracy (L,) for computations beginning at t = 0 and ending at t = T; (b) 
leave other parameters free (e.g., At, or Ax), and compare the computing time 
required to attain such accuracy for various choices of the parameters. 

Various methods are applied to the KdV equation (1.1) subject to the following 
conditions: 

(a) The Initial Conditions 

(i) I-Soliton Solution 

The exact solution of (1.1) on the infinite interval is 

u(x, t) = A sech2(kx - ot - q,J, (1.2) 

where 

w = 4k2, A = 2k2, v0 = constant. 

For initial conditions, Eq. (1.2) is used at t = 0, and different values of A are tested 
and no is chosen to be zero. 

(ii) Collisions of Two Solitons 

The exact solution of (1.1) on the infinite interval is 

(1.3) 
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where 

and eAij _ - 

For initial conditions, Eq. (1.3) is used at t = 0, and two different sets of values of the 
parameters are studied, namely, 

and 

k, = 1, kx=v% 71 3 ~2 
(0) = 0 (0) = 2 fi 9 

k, = 1, kz=&, 111 (0) = 0 , ‘?p = 10.73, 

and the solitons are allowed to interact and return to their original shapes. 

(a) The Boundary Conditions 

Periodic boundary conditions on the interval [-20, 201 are imposed. 
The numerical solution is compared with the exact solution. In addition, two of the 

conserved quantities are computed, namely; I u2dx, and ,( [2u 3 - (uX)’ ] dx. 

2. THE REPRESENTATION OF THE KdV EQUATION USING NUMERICAL METHODS 

1. Finite DifSerence Methods 

(i) Zabusky and Kruskal Scheme 

In their original work, Zabusky and Kruskal [lo], used the explicit leapfrog finite 
difference scheme 

where UC = u(nAx, mdt); n and m are integers. This scheme is consistent with 
Eq. (1.1) and the truncation error is of order (O((At)‘) + O((Ax)‘)). The linear 
stability requirement for this scheme is 

At 1 2 - __ 
- -2uo + (Ax)~ ’ 3 fi Ax (2.2) 
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(where uO is the maximum value of u in the range of interest). This means that a very 
small time step must be used to preserve stability. For the initial time step one may 
use the uncentered scheme 

At 

1 (UY1+*-2u~+,+2U~-,-U~-*), -2(dx)3 

(b) Implicit Methods 

(i) Hopscotch Method 

In 1976 Greig and Morris [ 13) proposed a hopscotch scheme for the KdV 
equation (1.1). 

Withf= u*/2, the scheme is 

U” 
mt1=p 

n -3~(f:+,-S~-,)-~(u~+*-2u~t, 
Vx) 

+ 2u:-, - uy-,), (2.4a) 

utl m+lzum ” - 3 g (f ;,t; -f y;) - & <u;,‘: - 2u;,+; + 2u;i; - u;‘:). 

(2.4b) 

To implement the scheme, we employ (2.4a) for those grid points for which 
(n + m) is even and (2.4b) for those for which (n + m) is odd. A quasi-tridiagonal 
system of equations must be solved at each time level. An optimization of Gaussian 
elimination method is used to solve this system (see paper II, Appendix A). The 
linear stability requirement for this scheme is that [ 131 

At 1 
(Ax)~ ’ (Ax)’ u0 - 2 (2.5) 

(u, is the maximum value of u in the range of interest). The truncation error of this 
scheme is of order (O((At)*) + O((Ax)‘)). 

(ii) A Scheme Due to Godu 

This implicit scheme for approximating the KdV equation (1.1) is given by 

1 
+ am {u ;,‘; - 2u;,+: + 2u!y: - u;:;, = 0. 
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The truncation error of this scheme is O(dt) + O((dx)*). This scheme is uncon- 
ditionally stable according to linear analysis. In order to apply this scheme, we have 
to solve a quasi-pentagonal system of equations at each time level: 

x x x x x 

x x x x X 

x x x x x 

x x x x x 

x x x x x 

x x x x x 

X x x x x 

x x x x x 

An optimization of Gaussian elimination method is used to solve this system of 
equations. 

(iii) The Proposed Scheme Which Is Based on the ZST (see Paper Z) 

First, consider the local scheme with A (‘) = 3 ( / 2)(dt/(~lx)~), which can be written 
as 

m+i u, -u; 1 
At 

=y [U~~:-':-3U~fL+3U~,+1'-u~~: +u;-*-324;_, +3u::-zq+,] 
2W) 

- & [(u;)’ - (u;“)‘] - & {u,“,‘;(u;” + u;,+,l + 24;::) 

- u;-:-l@q + u:-* t u;-*)}. (2.7) 

The truncation error of this scheme is O((At)*) + O((Ax)‘). 
To implement this scheme, Eq. (2.7) for the new time level can be written as [ 161 

u f,‘; - 324;;; + (3 + E) u;+’ - ~7:; = B,. (2.8) 

where 

2W3 < 1 
E S - - - - -  < 

At 

(dt is supposed to be of the same order as Ax) and 

B,=U~~2-3U;~,-U~+,+(3+E)U; 

- 3(Ax)z[(u;)2 -(u;+‘)*] - (Ax)*[u;,+:(u;+l t uf,+,l + z&T;> 

- u;-*(u:: + u;-I + u:-,)]. (2.9) 
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This can be solved by a version of the Crank-Nicolson back and forth sweep method 
for the heat equation [20]. We seek an equation of the form 

24 ;,‘1’ = QU;+' + b;+‘, (2.10) 

which is suitable for computing u:” explicitly by sweeping to the right. For stability 
Ial < 1. Repeated substitution into Eq. (2.8) to eliminate u:,‘:, uz:;, and ur” in 
favor of UT’; gives 
b ;,‘,‘+ (a-3)b;+’ + (Q' - 3Q + 3 + &) b;i,’ + (Q" - 3Q2 + 3u + &a - 1) u;:; = B,,. 

(2.11) 

Requiring the ur:; term to drop out determines a (uniquely since 1 al < 1) as a 
solution of 

(Q- 1)” f&U=0 (2.12) 

and leaves for b, (at the new time level) a second-order difference equation. The 
corresponding homogeneous equation of (2.11) has a solution of the form 

if the constant k satisfies 
b, = k” (2.13) 

k2 + (Q - 3) k + a* - 3Q + 3 + & = 0. (2.14) 

It can be shown, or verified, that the two roots k of this equation are the two roots 
with 1 kl > 1 other than that of the cubic equation determining a < 1 above. It follows 
that b can be computed explicitly by sweeping to the left 

b n~,=(3u-Q2)b,-ub,+,+uB, (2.15) 

(Eq. (2.15) is obtained from (2.11) and (2.12)). To obtain the solution u,,, first solve 
for 6, from (2.15) then use (2.10) to calculate u,. 

In order to implement this sweeping technique, the same iteration method used for 
the sweeping technique discussed in paper II is used. The only difference is that we 
have to assume initial values not just for b, but also for b,, , . 

Second, for the global method which can be written as (paper I, Equation (2.30),) 
s:: Ly- -F 

1-s; I ,Zm 
E,+,+Sy+’ W,(A “’ + c,- 2) 

1-l 
- D’f”y,-,+P’+ c (H,+G,) S;“+‘Y,+(Y~-1) W;’ W,, 

k=-m I I I 

m+1 
sn 

n-1 
- 

1 -s;+’ P’+ x 
I=-00 

+ sy++,’ Z,-S;:,y,,‘,N,+,}+y,T,-*+(y,- 1) 1 I w;’ wn-I 

1 1 m+l -sm 
PE + 1-s; 

St’ 
n+1- 1 -,;+I T n-z= (1 - s;+‘)(l “&SF) ’ (2.16) 
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where 

E =A’2’SmW n n n-1 -S;+‘D’2’+H,+G,-S;+1 $ (ff,+G,) 
k=-a, 

+ s:: w,-,C,,-, - S;DI_“‘, C,=A’_4’+ i PjWJ:‘, 
j=-m 

Z,=(A’2’+ C QjW~~‘) W,, N,=D’_2’+ ~ Fj, 
j=-a, j=-* 

f-f, =A?‘(S:+:Yk - s:> wk-,, G, = (S; - Sr,+;) 0’“‘) 

Fj’iA~‘4’(Sjm+‘Wj-Sjm_+11 WjJ+ D:)(Sjm_l -Sjm+‘), 

pj=A’4’(S;+’ -Si”,,) Wj+D(4’(Sjm+~‘-Sjmf1~j), 

Qj=(Sjm_+-Ssjm) WjA’-4’-(Si”_,yj-Sim)D(_4’, 

,4’*‘=--1AK’)+ia 
3 - 2’ 

Dc2) = 
- 

--A’o’__ 2 1 
3 2 a, 

A’4’=~A’O’ 1 
6- --a, 4 

D’4’=&@o’+-a 1 
- 6 - 4’ 

a=- At 
(Ax)~ ’ 

A !? = arbitrary constant and s; = 1 - ,-(A*)Q. 

With A?’ = i a, the same idea is applied and the only difference is in the B, term. 
This proposed scheme is unconditionally stable, and has a truncation error of order 
VWt)* + WA-d*)). 

(iv) A Scheme Suggested by M. Kruskal 

Kruskal [ 16) has suggested the numerical scheme 

u;+’ - u,” 
At + 

tin”,‘; - 3u,m++; + 3u,m+j - u;y, 

am 

+ urt* - 3u:: -I- 324, - u;-* 
am 

= 
o 

(2.17) 

(2.18) 

for 

ut + u,,, = 0. 
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Kruskal did not suggest any particular numerical scheme for the nonlinear part of the 
KdV equation (1.1). The following scheme is used to solve the KdV equation (1.1): 

m+l u, -24; 
At + 

u~+‘:-3u~,+:+3u~+‘-u~-t: 
am 

+ C,I - 3u; + 3u;-, - u;-2 
am 

+3 

+ (u2>5 1 - (u’>;- ,J + gg [u;+‘(u;:: - u;‘:) 

+ u;(u;+, - u;- ,>I = 0. (2.19) 

To implement this scheme, the above mentioned sweeping/iteration technique is 
used. Several values of 19 are employed and experimentally we find that I3 = j gives the 
best results. 

This scheme is unconditionally stable according to linear stability, and has a trun- 
cation error of order (O((At)‘) + ~((Ax)~)). 

2. Finite Fourier Transform or Pseudospectral Methods 

(i) Split Step Fourier Method by F. Tappert 

For convenience the spatial period was normalized to [0, 27~1, then Eq. (1.1) 
becomes 

(2.20) 

where p is half the length of the interval of interest, and X = (x +p) n/p. 
As discussed in part II of this paper the essence of the solution method is to 

alternate between two steps: (1) advance the solution using only the nonlinear term 
by means of a (implicit) finite difference approximation. (2) advance the solution 
using only the linear term by means of the discrete fast Fourier transform (FFT). 

To implement this method for the KdV equation (2.20), as the first step, one first 
approximates, 

uI + 6 ; uux = 0. (2.21) 

A straightforward discretization is 

ull 
-Itl+l =pl 

n -+& {(u”);t’: - (22’);‘: + (uZ);+, - (u2):-,}, (2.22) 
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where u’ is a solution of Eq. (2.21) and u is the solution of Eq. (2.20). For the second 
step, we would take, 

U(Xj, t + At) = F-l(e’kJ”“p~AfF(~(Xj, t))), (2.23) 

where F denotes discrete Fourier transform and F-’ its inverse. This scheme is 
second order accurate in time and space (which comes from using Eq. (2.22) to 
approximate Eq. (2.21)), and unconditionally stable according to linear analysis. In 
order to find F(C) and F-’ the FFT technique is used. We have found however that 
an improved discretization of (2.21) works considerably better. Specifically the trun- 
cation error of the split step Fourier method is improved to be of order 
(O((dt)‘) + O((~X)~)) instead of order (O((dt*) + O((dx)*)), by approximating Eq. 
(2.21) according to 

un 
-m+l= 

u:: - &; { [ 8(u’*);,+,’ - 8(C2);f,’ - (u”);,‘; 

t (~‘>;“:I t Nu%‘+, -W*);-, - (u*):+, t (u2),me2]). (2.24) 

Also, one may improve the truncation error to be of order (O(dt)* t Ok) for all 
p, see the pseudospectral method (Fornberg and Whitham) below. 

(ii) Pseudospectral Method by Fornberg and Whitham [ 181 
As mentioned in part II of this paper, this is a Fourier method in which u(x, t) is 

transformed into Fourier space with respect to x. Again for convenience the spatial 
period is normalized to [0,2n]. This interval is discretized by N equidistant points, 
with spacing AX= 27r/N. The function u(X, t), numerically defined only on these 
points, can be transformed to the discrete Fourier space by 

u^(k, t) = FU = & z: u(jAX, t) e-2niik’N, 

k = - ;,..., -l,O,l,..., $1. 

The inversion formula is 

’ u(jAX,t)=F-‘u^=- y ;(k, t) e*nijk/.W, 
fly 

k=-; ,..., -l,O,l,..., r-1. 

(2.25) 

(2.26) 

These transforms can be performed, efficiently with the fast Fourier transform 
algorithm [21]. With this scheme, U, can be evaluated as F- ‘{ikFu}, uxxx as 
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F-I{-ik3Fu} and so on. Combined with a leap-frog time step the KdV equation 
(2.20) would then be approximated by 

z&Y, t +At)-u(X, t -At) + 2i$dru(X, t)F-*@F(u)) 

- 2iAt$ F-‘(k3F(u)) = 0. 

(2.27) 

Fornberg and Whitham make a modification in the last term, however, and take 

u(X, t t At) - u(X, t -At) + 2i-$- At u(X, t) F-‘@F(u)) 

- 2iF-’ /sin (FAfi F(u)/ =O. (2.28) 

The difference between Eq. (2.27) and (2.28) is in the approximation of the linear 
equation 

3 

24, t ; uxxx = 0. 
P 

The linear part of Eq. (2.28) is exactly satisfied for any solution of Eq. (2.29) [ 181. 
Also it turns out that the linearized stability condition is less restrictive for (2.28) 
than for (2.27): A~/(Ax)~ < 3/2x3 N 0.1520 compared to A~/(Ax)~ < l/n3 z 0.0323 
(for details see [ 181). 

Since the Fornberg and Whitham scheme is explicit, it is natural to consider 
Crank-Nicolson type implicit version, e.g., 

u(X, t t At) - u(X, t) t 3iAtn/p(u(X, t + At) F-‘(kF(u(X, t t At))) 

t u(X, t) F-‘(kF(u(X, t)))) -F (:I 3 (Fp’(k3F(u(X, t + At))) 

+ F-‘(k3F(u(X, t)))) = 0. (2.30) 

This scheme (2.30) is unconditionally stable according to linear stability. We make 
some remarks about (2.30) in the conclusions. 

3. CONCLUSIONS 

Various numerical methods are used in order to approximate the KdV equation 
(l.l), namely, (i) Zabusky and Kruskal scheme (2.1), (ii) hopscotch method (2.4), 
(iii) a scheme due to Goda (2.6), (iv) a proposed local scheme (2.7), (v) a proposed 
global scheme (2.16), (vi) a scheme suggested by Kruskal (2.19), (vii) split step 
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Fourier method by Tappert (2.22b(2.24), and (viii) pseudospectral method by 
Fornberg and Whitham (2.28). 

As in part II, our approach for comparison is to (a) fix the accuracy (L,) for 
computations beginning at t = 0 and ending at t = T, (b) leave other parameters free 
(e.g., dt, or dx), and compare the computing time required to attain such accuracy 
for various choices of the parameters. 

Two sets of initial conditions were studied: (A) 1-soliton solution with different 
values of the amplitude, (B) collisions of two solitons with different values of the 
parameters. According to this approach we have made the following conclusions: 

(1) The scheme of Goda required a long time compared to the other ((i), (ii), 
(iv), (vi), (vii), (viii)) schemes. 

(2) Zabusky and Kruskal’s scheme was good for low amplitudes, but it needed 
more computing time than the other remaining methods ((ii), (iv), (vi), (vii), (viii)) 
for high amplitudes. 

(3) The calculations for the previous two methods; Goda, and 
Zabusky-Kruskal, were not carried out for the 1-soliton case with amplitude = 4. 
They needed very long computing time. 

(4) The Tappert and hopscotch schemes took less computing time than the 
previous two schemes. For small amplitudes hopscotch was more efficient than 
Tappert, and they behave almost the same for fairly small amplitudes. On the other 
hand for relatively high amplitudes the Tappert scheme turned out to be better. 

(5) The suggested scheme by Kruskal is in general faster than the previous 
schemes ((i), (ii), (iii), (v), (vii)). 

(6) The Fornberg and Whitham method is much faster than the suggested 
scheme by Kruskal, it is roughly three times faster for small amplitudes and six times 
faster for high amplitudes. Also (2.27) was tried, but (2.28) proved to be somewhat 
faster. In addition, the implicit version (2.30) was implemented and did not prove to 
be faster than (2.28). 

(7) The proposed local scheme is the best amongst all the utilized schemes. It 
was roughly eight times faster than the suggested scheme by Kruskal. (See remark 
below Eq. (2.18)). This certainly shows that the approximation of the nonlinear term 
is crucial. Also, it was roughly one and a half times faster than the Fornberg and 
Whitham scheme. This despite the fact that the local scheme is only O((dt)‘, (Ax)~) 
whereas Fornberg and Whitham method is of order O((dt)‘, (Ax)~) for all p, These 
results suggest that “IST generated” schemes will be good approximations for 
equations which are in fact exactly solvable by the IST. The proposed global scheme 
was implemented and proved to be faster than some of the utilized schemes, but much 
slower than its local version. Since the global scheme is so complicated and 
cumbersome, we are not convinced that our methods of implementation were optimal. 
Optimizing the implementation of our global scheme will be under further 
investigation in the near future. (The following tables and figures exhibit the results). 
All the numerical calculations were inspected at every step by using the conserved 



TA
BL

E 
I 

Co
mp

ar
iso

n 
of 

the
 

Co
mp

ut
ing

 
Ti

me
 

(f?
) 

W
hic

h 
Is 

Re
qu

ire
d 

to 
At

ta
in 

an
 

Ac
cu

rac
y 

(L,
) 

< 
0.

00
5 

for
 

Co
mp

uta
tio

ns
 

Be
gin

nin
g 

at 
t =

 
0 

an
d 

En
din

g 
at 

t =
 

1.0
, 

for
 

the
 

Nu
me

ric
al 

Me
tho

ds
 

Ut
iliz

ed
 

in 
So

lvi
ng

 
the

 
Kd

V 
Eq

ua
tio

n’ 

Ti
me

 

No
. 

Me
th

od
 

Me
sh

 
siz

e 
mi

n 
se

t 
t=

7 

I. 
Ex

pli
cit

 
(Z

ab
us

ky
 

Ax
=O

.1
73

9 
an

d 
Kr

us
ka

l) 
At

 =
 0

.0
02

 

2. 
Co

da
 

Ax
 =

 0
.1

 
Af

=O
.O

02
 

3. 
Ho

ps
co

tch
 

Ax
 =

 0
.2

 
At

=0
.0

03
 

4. 
Ta

pp
er

t 
Ax

=O
.3

12
5 

AI
 =

 0
.0

04
 

0.2
5 

0.
00

17
3 

0.
00

00
0 

0.
00

47
9 

E:
 

0 
28

 
0.5

 
0.

00
28

3 
0.

00
00

1 
0.

00
48

0 
4 

1.0
 

0.
00

46
9 

0.
00

00
0 

0.
00

47
8 

0.2
5 

0.
00

13
4 

-0
.00

08
0 

0.
00

02
6 

E:
 4

 
4 

0.5
 

0.
00

24
5 

-0
.00

16
0 

-0
.00

10
7 

34
.9 

1.0
 

0.
00

49
2 

-0
.00

3 
18

 
-0

.00
37

2 

0.2
5 

0.
00

17
8 

E:
 0

 
23

 
0.

5 
0.

00
29

2 
1.

0 
0.

00
47

2 

0.2
5 

E:
 

1 
3 

0.5
 

1.0
 

-0
.00

00
 

1 
0.

00
00

0 
0.

00
00

2 

0.
00

00
0 

-o
.oo

oo
 

1 
-0

.00
00

 
I 

0.
00

62
7 

0.
00

62
8 

4.3
 

0.
00

61
9 

0.
00

33
8 

0.
00

40
 

1 
0.

00
49

4 

-0
.00

00
4 

-0
.00

00
4 

9 
-0

.00
00

5 

VI
 

No
rm

ali
ze

d 

02
 

E 



5. 
Kr

us
ka

l 

6. 
Th

e 
pr

op
os

ed
 

loc
al 

sc
he

me
 

7. 
Th

e 
pr

op
os

ed
 

glo
ba

l 
sc

he
me

 

8. 
Ps

eu
do

sp
ec

tra
l 

by
 

Fo
rn

be
rg

 
an

d 
W

hit
ha

m 

Ax
 

= 
0.0

8 
AI

 =
 

0.0
4 

E:
 

0 

Ax
=O

.16
 

At
 =

 
0.

12
5 

E:
 

0 

Ax
=O

.l3
 

At
 =

0.1
2 

E:
 

0 

Ax
 

= 
0.

62
5 

At
 =

 
0.

00
96

 
E:

 
0 

0.2
5 

. 
24

 
0.5

 
1.0

 

0.
00

20
2 

0.
00

30
3 

0.
00

45
3 

0.2
5 

0.
00

14
6 

I 
0.5

 
0.

00
16

2 
1.0

 
0.

00
11

3 

0.2
5 

0.
00

13
8 

38
 

0.5
 

0.
00

25
2 

1.0
 

0.
00

47
7 

0.2
5 

0.
00

15
7 

12
 

0.5
 

0.
00

16
2 

1.0
 

0.
00

11
3 

0.
00

00
1 

0.
00

00
1 

0.
00

00
2 

o.
oo

oo
5 

0.
00

00
7 

0.
00

01
1 

0.
00

00
0 

0.
00

00
0 

0.
00

00
 

1 

0.
00

22
5 

-0
.00

 
11

2 
0.

00
18

5 

0.
00

10
1 

0.
00

10
1 

3.4
 

0.
00

10
2 

0.
00

41
3 

0.
00

41
9 

1 
0.

00
42

6 

0.
00

26
4 

0.
00

26
3 

5.4
 

0.
00

26
3 

0.
02

3 
15

 
-0

.01
09

0 
1.7

 
0.

01
97

7 

‘Tw
o 

co
ns

erv
ed

 
qu

an
titi

es
 

ar
e 

sh
ow

n. 
1-

so
lito

n 
as

 
an

 
ini

tia
l 

co
nd

itio
n 

wi
th

 
am

pli
tu

de
 

= 
1 

on
 

the
 

int
er

va
l 

[-2
0,2

01
. 

Ax
 

= 
Th

e 
inc

re
me

nt 
in 

X.
 

At
 =

 
Th

e 
inc

re
me

nt 
in 

t. 

11
1 =

 
(u

, 
- 

uIl
JIu

*o
~ 

UI
O 

= 
Th

e 
ex

ac
t 

va
lue

 
of 

J‘u
* 

dx
. 

L’2
 = 

(u
* 

- 
GJ

u2
0~

 
u2

0 
= 

Th
e 

ex
ac

t 
va

lue
 

of 
s 

(2
u3

 
- 

(u
,)‘]

 
dx

. 
ur 

= 
Th

e 
ca

lcu
lat

ed
 

va
lue

 
of 

the
 

co
ns

erv
ed

 
qu

an
tity

 
of 

the
 

Kd
V 

eq
ua

tio
n 

wh
ich

 
is 

su
’ 

dx
. 

II*
 =

 
Th

e 
ca

lcu
lat

ed
 

va
lue

 
of 

the
 

co
ns

erv
ed

 
qu

an
tity

 
of 

the
 

Kd
V 

eq
ua

tio
n 

wh
ich

 
is 

j 
[2

u’ 
- 

(U
s)‘

] 
dx

. 
L,=

ma
x/t

iz-
 

uf
l, 

tif 
is 

the
 

nu
me

ric
al 

so
lut

ion
 

an
d 

u F
 i

s 
the

 
ex

ac
t 

so
lut

ion
 

at 
the

 
po

int
 

(A
x 

. n
, 

At
 

m)
 

for
 

al
l 

n, 
m.

 



TA
BL

E 
I1 

Co
mp

ar
iso

n 
of 

the
 

Co
mp

ut
ing

 
Ti

me
 

(E
) 

W
hic

h 
Is 

Re
qu

ire
d 

to 
At

ta
in 

an
 

Ac
cu

rac
y 

(L,
) 

< 
0.0

1 
for

 
Co

mp
uta

tio
ns

 
Be

gin
nin

g 
at 

t =
 

0 
an

d 
En

din
g 

at 
t =

 
1.0

, 
for

 
the

 
Nu

me
ric

al 
Me

tho
ds

 
Ut

iliz
ed

 
in 

So
lvi

ng
 

the
 

Kd
V 

Eq
ua

tio
n”

 

No
. 

Me
th

od
 

Me
sh

 
siz

e 

1. 
Ex

pli
cit

 
(Z

ab
us

ky
 

an
d 

Kr
us

ka
l) 

2. 
Go

da
 

3. 
Ho

ps
co

tch
 

4. 
Ta

pp
er

t 

5. 
Kr

us
ka

l 

Ax
 

= 
0.0

8 
At

 =
 

0.
00

01
9 

Ax
 

= 
0.0

4 
At

 =
 

0.
00

02
5 

Ax
=O

.l 
At

 
= 

0.
00

05
 

Ax
 

= 
0.

15
6 

At
 

= 
0.

00
2 

Ax
 

= 
0.0

4 
At

 =
 

0.
01

1 

Ax
=O

.l 
At

=O
.l 

6. 
Th

e 
pr

op
os

ed
 

loc
al 

sc
he

me
 

7. 
Th

e 
pr

op
os

ed
 

glo
ba

l 
sc

he
me

 

8. 
Ps

eu
do

sp
ec

tra
l 

by
 

Fo
rn

be
rg

 
an

d 
W

hit
ha

m 

Ax
 

= 
0.0

5 
At

 
= 

0.
02

5 

Ax
 

= 
0.3

 1
25

 
At

 
= 

0.
00

42
 

Ti
me

 

mi
n 

se
t 

t=T
 

E:
 

9 
51

 

28
 

E:
 

59
 

E:
 

4 
32

 

E:
 

4 
31

 

E:
 

2 
43

 

E:
 

0 

E:
 

6 

23
 I 40
 

E:
 

0 

0.2
5 

0.
00

30
7 

0.
00

00
0 

0.
00

20
3 

0.5
 

0.
00

52
0 

0.
00

00
0 

0.
00

20
3 

1.0
 

0.
00

93
0 

0.
00

00
0 

0.
00

20
3 

0.2
5 

0.
00

23
6 

-0
.00

08
0 

-0
.00

08
2 

0.5
 

0.
00

50
9 

0.
00

02
8 

-0
.00

21
5 

1.0
 

0.
01

28
2 

-0
.00

3 
18

 
-0

.00
48

0 

0.2
5 

0.
00

37
 

1 
0.

00
00

0 
0.

00
3 

18
 

0.5
 

0.
00

59
2 

0.
00

00
 

1 
0.

00
3 

13
 

1.0
 

0.
00

99
4 

o.o
oQ

o 
1 

0.
00

3 
16

 

0.2
5 

0.
00

72
9 

-0
.00

00
 

1 
-0

.00
00

7 
0.5

 
0.

00
82

0 
-0

.00
00

3 
-0

.00
00

9 
1.0

 
0.

00
94

3 
-0

.00
00

5 
-0

.00
01

4 

0.2
5 

0.
00

41
8 

-0
.00

00
 

1 
0.

00
05

 
1 

0.5
 

0.
00

60
7 

0.
00

00
 

1 
0.

00
05

2 
1.0

 
0.

00
95

2 
0.

00
00

2 
0.

00
05

3 

0.2
5 

0.
00

23
7 

0.
00

00
9 

0.
00

33
 

1 
0.5

 
0.

00
24

6 
0.

00
01

0 
0.

00
33

0 
1.0

 
0.

00
33

2 
0.

00
01

4 
0.

00
33

7 

0.2
5 

0.
00

22
8 

o.o
OO

Q3
 

0.
00

08
3 

0.5
 

0.
00

44
3 

0.
00

00
5 

0.
00

08
7 

1.0
 

0.
00

88
2 

0.
00

00
8 

0.
00

09
2 

0.2
5 

0.
00

29
9 

0.
00

00
9 

0.
00

16
8 

0.5
 

0.
00

32
3 

-0
.00

00
3 

-0
.00

07
4 

1.0
 

0.
00

47
4 

0.
00

00
8 

0.
00

16
2 

‘Tw
o 

co
ns

erv
ed

 
qu

an
titi

es
 

ar
e 

sh
ow

n. 
1-

so
lito

n 
as

 
an

 
ini

tia
l 

co
nd

itio
n 

wi
th

 
am

pli
tu

de
 

= 
2 

on
 

the
 

int
er

va
l 

I-2
0, 

20
1. 

02
 

No
rm

ali
ze

d 
E 25

.1 

15
5.

1 1 16
 1.7

 



TA
BL

E 
III 

Co
mp

ar
iso

n 
of 

the
 

Co
mp

ut
ing

 
Ti

me
 

(E
) 

W
hic

h 
Is 

Re
qu

ire
d 

to 
At

ta
in 

an
 

Ac
cu

rac
y 

(L,
) 

( 
0.

02
2 

for
 

Co
mp

uta
tio

ns
 

Be
gin

nin
g 

at 
t =

 
0 

an
d 

En
din

g 
at 

t =
 

1.0
, 

for
 

the
 

Nu
me

ric
al 

Me
tho

ds
 

Ut
iliz

ed
 

in 
So

lvi
ng

 
the

 
Kd

V 
Eq

ua
tio

n”
 

Ti
me

 
No

rm
ali

ze
d 

No
. 

Me
th

od
 

Me
sh

 
siz

e 
mi

n 
se

t 
t=

T 
L,

 
VI

 
V2

 
E 

3 
1. 

Ho
ps

co
tch

 
Ax

 =
0.

05
 

At
=6

.2
x 

IO
-’ 

E:
 

77
 

0.
25

 
0.

00
72

2 
o.

oo
oo

o 
0.

00
15

8 
39

 
0.

5 
0.

01
24

0 
0.

00
00

0 
0.

00
15

7 
33

.3
 

1.0
 

0.
02

25
9 

0.
00

00
0 

0.
00

15
8 

0.
25

 
0.

01
62

42
 

o.
oo

oo
o 

-0
.00

00
1 

30
 

0.
5 

0.
01

71
40

 
o.

oo
oo

o 
-0

.0
00

04
 

11
.4 

1.0
 

0.
02

15
86

 
0.

00
00

0 
-0

.00
00

0 

2. 
Ta

pp
er

t 

3. 
Kr

us
ka

l 

4. 
Th

e 
pr

op
os

ed
 

loc
al 

sc
he

me
 

5. 
Th

e 
pr

op
os

ed
 

glo
ba

l 
sc

he
me

 

6. 
Ps

eu
do

sp
ec

tra
l 

Ax
 =

0.
07

3 
At

=0
.0

00
8 

E:
 

26
 

Ax
 =

 0
.0

3 
At

 =
 0

.0
1 

E:
 

22
 

Ax
 =

0.
05

 
At

=0
.0

27
5 

E:
 

2 

Ax
 =

 0
.0

25
 

AI
 =

0.
00

5 
E:

 
53

 

Ax
=O

.3
12

5 
by

 
Fo

rn
be

rg
 

an
d 

d 
t =

 
0.0

0 
11

5 
E:

 
3 

W
hit

ha
m 

0.
25

 
0.

00
58

0 
-0

.0
00

04
 

8 
0.

5 
0.

01
06

9 
-0

.0
00

08
 

1.
0 

0.
02

11
0 

-0
.00

01
8 

0.
00

05
0 

0.
00

04
4 

9.
5 

0.
25

 
0.

00
99

2 
-0

.0
00

02
 

20
 

0.
5 

0.
01

27
2 

-0
.0

00
03

 
1.0

 
0.

01
74

7 
-0

.0
00

04
 

0.
00

15
4 

> 
0.

00
15

2 
I 

3 

0.
00

14
9 

Y a?
 

0.
25

 
0.

00
53

0 
0.

00
00

 
1 

0.
00

04
2 

z 
23

 
0.

5 
0.

01
07

2 
0.

00
00

9 
0.

00
05

5 
22

.9
 

1.
0 

0.
02

16
3 

-0
.0

00
06

 
0.

00
02

9 

0.
25

 
0.

00
60

0 
-0

.0
00

67
 

-0
.0

06
53

 
14

 
0.

5 
0.

01
09

5 
0.

00
22

 1
 

0.
02

22
0 

1.
4 

1.0
 

0.
01

75
2 

-0
.0

00
88

 
-0

.0 
10

0 
1 

‘Tw
o 

co
ns

erv
ed

 
qu

an
titi

es
 

ar
e 

sh
ow

n. 
1-

so
lito

n 
as

 
an

 
ini

tia
l 

co
nd

itio
n 

wi
th

 
am

pli
tu

de
 

= 
4 

on
 

the
 

int
er

va
l 

[ -2
0, 

20
1 



TA
BL

E 
IV

 

Co
mp

ar
iso

n 
of 

the
 

Co
mp

ut
ing

 
Ti

me
 

(I?
) 

W
hic

h 
Is 

Re
qu

ire
d 

to 
At

ta
in 

an
 

Ac
cu

rac
y 

(L,
) 

< 
0.

00
2 

for
 

Co
mp

uta
tio

ns
 

Be
gin

nin
g 

at 
t =

 
0 

an
d 

En
din

g 
at 

t 
= 

3.0
, 

for
 

the
 

Nu
me

ric
al 

Me
tho

ds
 

Ut
iliz

ed
 

in 
So

lvi
ng

 
the

 
Kd

V 
Eq

ua
tio

n”
 

Ti
me

 

No
. 

Me
th

od
 

Me
sh

 
siz

e 
mi

n 

1. 
Ex

pli
cit

 
(Z

ab
us

ky
 

Ax
 

= 
0.1

2 
an

d 
Kr

us
ka

l) 
A 

f =
 0

.0
00

66
 

E:
 

5 

2. 
Go

da
 

3. 
Ho

ps
co

tch
 

4. 
Ta

pp
er

t 

dx
=O

.l 
At

 
= 

0.
00

05
 

E:
 

46
 

dx
=O

.13
 

At
 =

 0
.0

0 
1 

E:
 

4 

Ax
=O

. 
15

62
5 

At
 =

 0
.0

05
 

E:
 

5 

se
t 

t=
T 

49
 4 43
 

22
 

0.1
 

0.5
 

1.0
 

2.0
 

3.0
 

0.1
 

0.5
 

1.0
 

2.0
 

3.0
 

0.1
 

0.5
 

1.0
 

2.0
 

3.0
 

0.1
 

0.5
 

1.0
 

2.0
 

3.0
 

L,
 

VI
 

0.
00

04
7 

0.
00

00
0 

0.
00

11
5 

0.
00

00
0 

0.
00

15
9 

0.
00

00
0 

0.
00

19
1 

0.
00

00
0 

0.
00

16
5 

0.
00

00
0 

0.
00

03
2 

-0
.00

00
5 

0.
00

10
5 

-0
.00

02
2 

0.
00

16
1 

-0
.00

04
 

1 
0.

00
20

0 
-0

.00
06

6 
0.

00
16

5 
-0

.00
08

2 

No
rm

ali
ze

d 

u2
 

E 

2 

0.
00

17
2 

0.
00

14
8 

5 

0.
00

11
0 

18
.4 

5 
0.

00
03

5 
u 

0.
00

03
3 

ti 
0.

00
11

1 
s 1 

0.
00

06
2 

=i 
0.

00
00

 
1 

14
5.

5 
N

 

-0
.00

09
5 

-0
.00

 
12

 1
 

0.
00

03
2 

-0
.00

00
5 

0.
00

11
1 

0.
00

10
7 

-0
.00

02
2 

0.
00

06
2 

0.
00

14
7 

-0
.00

04
 

1 
0.

00
00

 
1 

14
.9 

0.
00

19
1 

-0
.00

06
6 

-0
.00

09
5 

0.
00

14
2 

-0
.00

08
2 

-0
.00

12
1 

0.
00

17
1 

0.
00

00
0 

-0
.00

00
2 

0.
00

18
8 

0.
00

00
0 

-0
.00

00
7 

0.
00

16
0 

0.
00

00
0 

-0
.00

01
0 

16
.9 

0.
00

12
6 

o.
oo

oo
o 

-0
.00

00
4 

0.
00

18
6 

o.
oo

oo
o 

0.
00

01
8 



5. 
Kr

us
ka

l 
sc

he
me

 
Ax

 
= 

0.0
8 

At
 

= 
0.

01
5 

6. 
Th

e 
pr

op
os

ed
 

Ax
=O

.l 
loc

al 
sc

he
me

 
At

 
= 

0.1
4 

I. 
Th

e 
pr

op
os

ed
 

Ax
 

= 
0.0

7 
glo

ba
l 

sc
he

me
 

Al
 =

 
0.0

6 

8. 
Ps

eu
do

sp
ec

tra
l 

Ax
 

= 
0.

62
5 

by
 

Fo
rn

be
rg

 
an

d 
Af

 =
 

0.
01

48
 

W
hit

ha
m 

E:
 

1 
46

 

E:
O 

19
 

E:
 

4 
21

 

E:
 

0 
24

 

0.1
 

0.5
 

1.0
 

2.0
 

3.0
 

0.1
 

0.5
 

1.0
 

2.0
 

3.0
 

0.1
 

0.5
 

1.0
 

2.0
 

3.0
 

0.1
 

0.5
 

1.0
 

2.0
 

3.0
 

0.
00

02
 

1 
0.

00
00

0 
0.

00
07

6 
0.

00
08

8 
-o

.oo
oo

 
1 

0.
00

02
0 

0.
00

13
9 

0.
00

00
0 

0.
00

04
2 

5.6
 

0.
00

17
6 

0.
00

00
3 

0.
00

07
 

1 
0.

00
14

5 
0.

00
00

2 
0.

00
05

3 

0.
00

08
0 

-0
.00

00
 

1 
0.

00
11

9 
0.

00
11

3 
-0

.00
00

4 
0.

00
10

4 
0.

00
13

5 
-0

.00
0 

18
 

O.
CQ

O6
2 

1 
0.

00
13

8 
-0

.00
04

3 
-0

.00
01

8 
0.

00
14

8 
-0

.00
04

4 
-0

.00
02

3 

0.
00

02
5 

0.
00

00
 

1 
0.

00
06

0 
o.

oo
o5

 
1 

o.O
Oo

O4
 

0.
00

06
0 

0.
00

08
0 

0.
00

00
7 

0.
00

05
6 

13
.7 

0.
00

11
5 

0.
00

00
0 

0.
00

02
6 

0.
00

20
4 

0.
00

02
9 

0.
00

07
 

1 

0.
00

12
7 

0.
00

00
0 

0.
01

51
7 

0.
00

10
1 

-0
.00

06
9 

-0
.00

87
 

1 
0.

00
16

6 
-0

.00
04

7 
-0

.00
64

9 
1.3

 
0.

00
10

1 
-0

.00
00

5 
0.

00
03

3 
0.

00
10

7 
0.

00
01

8 
0.

00
27

2 

aT
wo

 
co

ns
erv

ed
 

qu
an

titi
es

 
ar

e 
sh

ow
n. 

Tw
o 

so
lito

ns
 

as
 

an
 

ini
tia

l 
co

nd
itio

n 
wi

th
 

am
pli

tu
de

s 
4 

an
d 

1 
re

sp
ec

tiv
ely

, 
an

d 
the

y 
ar

e 
all

ow
ed

 
to 

int
er

ac
t. 

on
 

the
 

int
er

va
l 

(-2
0, 

20
). 



248 TAHA AND ABLOWITZ 

:9 -a* om .- 8 -- 
$8 8 00 00 
jdddd 



5.
 

Kr
us

ka
l 

sc
he

me
 

Ax
 =

 0
.0

4 
At

=0
.0

04
5 

6.
 

Th
e 

pr
op

os
ed

 
Ax

=O
.O

75
 

loc
al 

sc
he

me
 

At
 =

 0
.0

55
 

7.
 

Th
e 

pr
op

os
ed

 
Ax

= 
0.

03
5 

glo
ba

l 
sc

he
me

 
At

 =
 0

.0
12

5 

8. 
Ps

eu
do

sp
ec

tra
l 

Ax
=O

.3
12

5 
by

 
Fo

rn
be

rg
 

an
d 

At
 =

 0
.0

04
 

W
hit

ha
m 

E:
 

11
 

E:
 

1 

E:
 

35
 

E:
 

1 

56
 

11
 

50
 

12
 

0.1
 

0.
00

22
1 

0.
00

00
0 

0.
00

06
0 

0.
6 

0.
00

69
6 

0.
00

00
1 

0.
00

04
8 

1.
2 

0.
00

84
2 

0.
00

01
5 

0.
00

00
1 

10
.1 

2.
0 

0.
01

53
4 

o.
oo

oo
o 

0.
00

04
 1

 
2.

4 
0.

02
01

9 
-0

.0
00

04
 

0.
00

05
0 

0.1
 

0.
00

22
9 

0.
00

00
 

1 
0.

00
2 

16
 

0.
6 

0.
00

32
1 

-0
.0

00
26

 
0.

00
12

7 
1.

2 
0.

01
02

3 
-0

.00
13

4 
0.

00
01

4 
I 

2.
0 

0.
01

61
3 

-0
.0

00
45

 
0.

00
07

3 
2.

4 
0.

01
50

2 
-0

.0
00

25
 

0.
00

16
1 

0.1
 

0.
00

09
2 

o.
oo

oo
 

1 
0.

00
04

8 
0.

6 
0.

00
47

8 
0.

00
01

2 
0.

00
06

 1
 

1.2
 

0.
00

66
2 

-0
.00

0 
18

 
-0

.0
00

23
 

30
.3

 
2.

0 
0.

01
67

0 
0.

00
0 

13
 

0.
00

05
8 

2.
4 

0.
02

00
2 

-0
.0

00
23

 
0.

00
00

7 

0.1
 

0.
00

45
4 

-0
.0

00
04

 
-0

.0
03

 
17

 
0.

6 
0.

00
79

 1
 

-0
.0

00
28

 
-0

.0
03

67
 

1.2
 

0.
00

78
3 

0.
00

03
3 

0.
00

06
0 

I 
2.

0 
0.

01
31

1 
0.

00
00

8 
0.

00
15

3 
2.

4 
0.

01
70

5 
-0

.00
16

2 
-0

.01
21

1 

“T
wo

 
co

ns
erv

ed
 

qu
an

titi
es

 
ar

e 
sh

ow
n. 

Tw
o 

so
lito

ns
 

as
 

an
 

ini
tia

l 
co

nd
itio

n 
wi

th
 

am
pli

tu
de

s 
l/2

 
an

d 
5/2

 
re

sp
ec

tiv
ely

, 
an

d 
the

y 
ar

e 
all

ow
ed

 
to 

int
er

ac
t, 

on
 

the
 

int
er

va
l 

I-2
0, 

20
1. 



FIG. 1. Displays the computing time (E) which is required by each utilized method given in Table I. 

1-soliton, amplitude = 1 

1. hb”SkY and Kruskal 
2. G&. 
3. Hopscotch. 

FIG. 2. Displays the computing time (E) which is required by each utilized method given in 
Table II. 

1-soliton, amplitude = 2. 
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FIG. 3. Displays the computing time (E) which is required by each utilized method given in 
Table III. 

1-soliton, amplitude = 4. 

IL I * 
1 2 3 4 5 6 7 8 Method 

FIG. 4. Displays the computing time (E) which is required by each utilized method given in Table 
IV. 

1. Zabusky and Kruskal. 
2  Gada. 
3. Hopscotch. 
4. Tappert. 
5. KrUZtdl. 
6. ihe proposed loCal scheme. 
I. The proposed global scheme 
8. Fornberg and Whitham. 

Two solitons with amplitudes 0.5 and 1. 

2.51 
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FIG. 5. Displays the computing time (E) which is required by each utilized method given in 
Table V. 

Two solitons with amplitudes 0.5 and 2.5. 

quantities i U* dx, and I (2u3 - (uJ2) dx. (Table I-V). The two conserved quantities 
were calculated by means of Simpson’s rule. In the finite difference schemes we have 
discritized U, using a central difference approximation. In the Fourier methods the 
derivatives are calculated using Fourier method. The proposed global scheme is the 
only utilized scheme which has an infinite number of conserved quantities, and true 
soliton solutions. It is worth mentioning that we calculate the L, error norm and find 
it reflects the same conclusions as the L, norm. 
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