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Various numerical methods are used in order to approximate the Korteweg—de Vries
equation, namely: (i) Zabusky—Kruskal scheme, (ii) hopscotch method, (iii) a scheme due to
Goda, (iv) a proposed local scheme, (v) a proposed global scheme, (vi) a scheme suggested by
Kruskal, (vii) split step Fourier method by Tappert, (viii) an improved split step Fourier
method, and (ix) pseudospectral method by Fornberg and Whitham. Comparisons between
our proposed scheme, which is developed using notions of the inverse scattering transform,
and the other utilized schemes are obtained.

1. INTRODUCTION

The Korteweg—de Vries equation (KdV) introduced in |1]| was originally derived in
order to describe the behavior of one-dimensional shallow water waves with small but
finite amplitudes. More recently, this equation also has been found to describe wave
phenomena in plasma physics |2, 3], anharmonic crystals [4,5] bubble-liquid
mixtures [6, 7], etc. There has been great interest in this equation because of its
special properties. A substantial review of this work can be found in |8, 9]. Zabusky
and Kruskal [10] discovered the concept of solitons localized waves with special
interaction properties, while studying the results of a numerical computation
(describing an anharmonic lattice) on the KdV equation. This motivated the work of
Gardner ef al. [11] and led to the explosion of both the theoretical and numerical
work which is still growing today. Many analytical results are available for equations
which exhibit exact multisoliton behavior, when an associated scattering problem can
be found. Of course there are many examples of inexact, or quasi-soliton behavior.
For these problems little or no analytical results are known and numerical studies are
essential in order to develop an understanding of the phenomena. This work aims to
compare a proposed scheme which was developed in paper I using notions of the
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inverse scattering transform (IST) and certain other known numerical methods for the
KdV equation

u,+ 6buu, +u,, =0 (1.1)

These results can be extended to cover many other related equations as well.
The following numerical methods are applied to the KdV equation:

1. Finite difference methods.
(a) Explicit methods.
(i) Zabusky and Kruskal scheme [10, 12].
(b) Implicit methods.
(i) Hopscotch method [13].
(ii) A scheme due to Goda [14].
(iii) The proposed scheme [15].
(iv) A scheme suggested by M. Kruskal [16].
2. Finite Fourier transform or pseudospectral methods.
(i) Split step Fourier method introduced by Tappert [17].
(ii) Pseudospectral method introduced by Fornberg and Whitham [18].

As in paper II in order to compare schemes, our approach for comparison is to (a)
fix the accuracy (L) for computations beginning at t =0 and ending at 1 =T; (b)
leave other parameters free (e.g., 4¢, or 4x), and compare the computing time
required to attain such accuracy for various choices of the parameters.

Various methods are applied to the KdV equation (1.1) subject to the following
conditions:

(a) The Initial Conditions
(i) 1-Soliton Solution

The exact solution of (1.1) on the infinite interval is
u(x, t) = A sech®(kx — wt — 1), (1.2)
where
w = 4k?, A =2k, 11, = constant.

For initial conditions, Eq. (1.2) is used at t =0, and different values of 4 are tested
and 7, is chosen to be zero.

(ii) Collisions of Two Solitons

The exact solution of (1.1) on the infinite interval is

u(x, £) = 2(log f)xx (1.3)
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where
f=1+e"+e"+ emtmtdiz
n=kx—kit+n,

eAij: (kl_kl)z
kit k;
For initial conditions, Eq. (1.3) is used at ¢t = 0, and two different sets of values of the
parameters are studied, namely,

k=1, k;z:\ﬁ, ’750)_0, (0) 2\[

and

and
k=1,  k,=v/5, n7®=0, 5®=10.73,
and the solitons are allowed to interact and return to their original shapes.

(a) The Boundary Conditions

Periodic boundary conditions on the interval |—20, 20] are imposed.
The numerical solution is compared with the exact solution. In addition, two of the
conserved quantities are computed, namely; [ #?dx, and [ [2u® — (u,)?] dx.

2. THE REPRESENTATION OF THE KdV EQUATION USING NUMERICAL METHODS

1. Finite Difference Methods

(i) Zabusky and Kruskal Scheme

In their original work, Zabusky and Kruskal [10], used the explicit leapfrog finite
difference scheme

At
m+1_ ,m—1 n m m m
u, =u, -2 Ax (u:l"+1+u" +un~1)(un+1_un—l)

At
-W(uﬁ"u—M%+2ui,"_1—un'"_z)a (2.1)
where u]! = u(ndx, mdt); n and m are integers. This scheme is consistent with
Eq. (1.1) and the truncation error is of order (0O((4t)?)+ O((4x)*)). The linear
stability requirement for this scheme is

<1 (22)

3V3

At
Adx

L
(4x)*
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(where u, is the maximum value of u in the range of interest). This means that a very
small time step must be used to preserve stability. For the initial time step one may
use the uncentered scheme

At
Uy = Uy T x (u2+l +u, + u2~1)(u2+1 —uy )

1
”——3(u(r]:+2“2u2+1+2u2-1‘u2«2)- (2.3)
2(4x)

(b) Implicit Methods

(i) Hopscotch Method

In 1976 Greig and Morris [13] proposed a hopscotch scheme for the KdV
equation (1.1).
With f= u2/2, the scheme is

u?H:” (fn+1 n1) — Z(A )3 (Upyr— 2uy 42Uy —uy ), (2.4a)

At
© 2(dx)

m+1 m+1 m+1 m+ i
S W — 2ugly + 2up ] —uy ).

m m 4t m m
un+1=un—3Ax (fnrll—f +1
(2.4b)

To implement the scheme, we employ (2.4a) for those grid points for which
(n 4+ m) is even and (2.4b) for those for which (n 4+ m) is odd. A quasi-tridiagonal
system of equations must be solved at each time level. An optimization of Gaussian
elimination method is used to solve this system (see paper II, Appendix A). The
linear stability requirement for this scheme is that [13]

(2.5)

(4x)’ < ' (Ax)* uy—2 '

(4, is the maximum value of u in the range of interest). The truncation error of this
scheme is of order (O((4¢t)*) + O((4x)?)).

(i) A Scheme Due to Goda

This implicit scheme for approximating the KdV equation (1.1) is given by

| 1
Z(u:’+l_u:’)+z— :ljll(u +un+1)_um+l(u +u,, 1)

1

+—2(Tx)7{u',:'le—2u”'“+2u"’” uj,"f}}:O. (26)

n+1
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The truncation error of this scheme is O(4t) + O((4x)?*). This scheme is uncon-
ditionally stable according to linear analysis. In order to apply this scheme, we have
to solve a quasi-pentagonal system of equations at each time level:

X X X X X
X X X X X
X X X X
X X X
X X X X X
X X X X X
X X X X X
_XX X i

An optimization of Gaussian elimination method is used to solve this system of
equations.

(iii) The Proposed Scheme Which Is Based on the IST (see Paper I)

First, consider the local scheme with 4'” = (3/2)(4¢/(4x)*), which can be written
as

m+t __ ..m 1

un un m+1 m+1 m+1 m+1 m m m
At _2(Ax)3 [un—l_3un +3un+1_un+2+un—2—-3un~l+3un_unm+l]

3 1
Y™ [(r)? — yt")?] Y™ {ug Sy up S gty
— Uy (uy +ug o +uy L)} (2.7)

The truncation error of this scheme is O((4¢)*) + O((dx)?).
To implement this scheme, Eq. (2.7) for the new time level can be written as [16]

wyt) = 3unf + G+ e)uytt —urt =B, (2.8)

where

2(4x)?
< 1
a <

(4t is supposed to be of the same order as 4x) and
B,=uy_,—3u; —ug. + @ +e)uy
= 3(dx)* [ () — (")) = (Ax) [y g g

—uy () +uy tuy ) (2.9)
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This can be solved by a version of the Crank—Nicolson back and forth sweep method
for the heat equation [20]. We seek an equation of the form

urtl=aumtt 4 p7, (2.10)

which is suitable for computing u)'*" explicitly by sweeping to the right. For stability
la| < 1. Repeated substitution into Eq. (2.8) to eliminate u7;),u; !, and 4} "' in

favor of ull* gives

bl +(@=3)brt ' + (@ —3a+3+e)by ) +(a’—-3a’+3a+ea—1)u; | =B,
Q2.11)

Requiring the #/'* term to drop out determines a (uniquely since |a|< 1) as a

solution of
(@a— 1)y +ea=0 (2.12)

and leaves for b, (at the new time level) a second-order difference equation. The
corresponding homogeneous equation of (2.11) has a solution of the form

b,=k" (2.13)
if the constant k satisfies

kK +(@a—-3)Yk+a*—3a+3+¢=0. (2.14)

It can be shown, or verified, that the two roots k of this equation are the two roots
with |k| > 1 other than that of the cubic equation determining a < 1 above. It follows
that b can be computed explicitly by sweeping to the left

,=QBa—a"b,—ab,., +aB, (2.15)

(Eq. (2.15) is obtained from (2.11) and (2.12)). To obtain the solution u,, first solve
for b, from (2.15) then use (2.10) to calculate u,.

In order to implement this sweeping technique, the same iteration method used for
the sweeping technique discussed in paper II is used. The only difference is that we
have to assume initial values not just for b, but also for b, , .

Second, for the global method which can be written as (paper I, Equation (2.30),)

Sm n
1 _nSm :A(—O) - [ 2 [EIH + STH WI(A(—D +Ci_y)
n =—00
-1
— oy ep® e N Gl s -] Wi w,
k=-o0
Sm +1

n-1 m
—S7
[ smH1 DO+ ¥ [Sm+1 Pis1 Ny — N+ M,

l=— I+1

S;"++11 S;"+1y,‘+‘1N,+l}+le,_z+(y,— 1)] Wl_lg W,

1 1 Sprl_gn
- D o = n ,
Ty B T T s I S s — 5

(2.16)
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where

En:A(-Z)S;Ian—lﬁng—lD(—Z)+Hn+Gn_Srrln+l 2 (Hk+Gk)

k= —o0

n
+SIW,_,C,_y=SPDW,  C,=49+ Y Pwil,

j=-o

Ty=9p My + ST Y01 Zy— ST Noits M,=Sr""W,A® - SrDpW,

(A(2)+ v Q] 1) Wn’ Nn-——D(})+ Z Fja

1——00 j=-o

1w (25
P 1 ! I_S;n+1 »
Hy=AY(ST, 7= S¥) W1 G,=(Sy—Suhp,
Fi=AD(STHW,— ST W,_ )+ DS, — ST,
Py= AG(STH! 7)) Wy + DS — ST 1),
=(S}”_+1'—SJ'~")WJ.A“” (S7,7,— S’")D“”

2 1 2 1
4D _ (©) @ _ L g0
= 3 AT + 7 @ DY 3 4= e
1 1 1 l At
A(“) — A(U) _ , D(4) — A(O) , — ,
- T4 T7¢ STEATTY Ty
A = arbitrary constant ~ and = ST=1—e V",

With 4'” = }q, the same idea is applied and the only difference is in the B, term.
This proposed scheme is unconditionally stable, and has a truncation error of order
(0((40)* + O((4x)*)).

(iv) A Scheme Suggested by M. Kruskal

Kruskal [16] has suggested the numerical scheme

m+1__ . m m+1 m+ 1 m+1 m+1
Uy Uy, Upyia 3un+1 + 314,, U,y

At 2(4x)?
—3uy +3uT_ —u™
n+1 n—1 n—-2
fo =0 (2.17)

for

4y, =0. (2.18)

S581/55/2'5
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Kruskal did not suggest any particular numerical scheme for the nonlinear part of the
KdV equation (1.1). The following scheme is used to solve the KdV equation (1.1):

a4
At 2(4x)°
n Upi1— U 2(25;4;- 1~ Una 43 g 4jx ()] — (W)r]
e o s g
+u’,7(u:,"+l—u£,”,,)]s =0. (2.19)

To implement this scheme, the above mentioned sweeping/iteration technique is
used. Several values of @ are employed and experimentally we find that 6 = 3 gives the
best results.

This scheme is unconditionally stable according to linear stability, and has a trun-
cation error of order (O((41)%) + O((4x)?)).

2. Finite Fourier Transform or Pseudospectral Methods
(i) Split Step Fourier Method by F. Tappert

For convenience the spatial period was normalized to [0, 2zn], then Egq. (1.1)
becomes

3

T T
U, +6—uu, +—u =0, 2.20
(+ Oy F Ty U (2.20)

where p is half the length of the interval of interest, and X = (x + p) n/p.

As discussed in part II of this paper the essence of the solution method is to
alternate between two steps: (1) advance the solution using only the nonlinear term
by means of a (implicit) finite difference approximation. (2) advance the solution
using only the linear term by means of the discrete fast Fourier transform (FFT).

To implement this method for the KdV equation (2.20), as the first step, one first
approximates,

v
u,+ 6 —uu, =0. (2.21)
p
A straightforward discretization is

172"*1:“'"———?'—{(”'"“ @)+ @ = @ (222)

n+1
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where 4 is a solution of Eq. (2.21) and « is the solution of Eq. (2.20). For the second
step, we would take,

u(X;, t + A1) = F~ (VP2 F@(X,, 1)), (2.23)

where F denotes discrete Fourier transform and F~! its inverse. This scheme is
second order accurate in time and space (which comes from using Eq. (2.22) to
approximate Eq. (2.21)), and unconditionally stable according to linear analysis. In
order to find F(i) and F~' the FFT technique is used. We have found however that
an improved discretization of (2.21) works considerably better. Specifically the trun-
cation error of the split step Fourier method is improved to be of order
(0((48)*) + O((dx)*)) instead of order (O((4t*) + O((4x)*)), by approximating Eq.
(2.21) according to

- At ks . . .
iy =y (18t ! — 83! — (@)

" 84X p

+ (@) Y+ [8(u)m, = 8uP)r — WD), + @I L] (2.24)

Also, one may improve the truncation error to be of order (0(4¢)? + O(4x)?) for all
D, see the pseudospectral method (Fornberg and Whitham) below.

(ii) Pseudospectral Method by Fornberg and Whitham (18]

As mentioned in part II of this paper, this is a Fourier method in which u(x, t) is
transformed into Fourier space with respect to x. Again for convenience the spatial
period is normalized to [0, 27]. This interval is discretized by N equidistant points,
with spacing 4X = 2n/N. The function u(X, ), numerically defined only on these
points, can be transformed to the discrete Fourier space by

1 Nl o
Uk, t) = Fu=—— by u(jax, t)e-anjk/A,

vN =

(2.25)
N N
k=——,.,—1,0,1,..,—— 1.
5 1,0, 1 5 1
The inversion formula is
1 ,
u(jax,)=F ‘i = —— Nk, t) e*m kN,
vN T (

N N
k=——,..—1,0,1,..,—— 1. 2.26
5 5 (2.26)

These transforms can be performed, efficiently with the fast Fourier transform
algorithm [21]. With this scheme, u, can be evaluated as F '[ikFu}, uyy, as
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F~'{—ik*Fu} and so on. Combined with a leap-frog time step the KdV equation
(2.20) would then be approximated by

WX, t + A8 — u(X, t — Ar) + 2i %”Az u(X, 1) F~ ' (kF (1))
3 2.27)
—2iAt %F"(k3F(u)) =0.

Fornberg and Whitham make a modification in the last term, however, and take

w(X, t + Af) — u(X, t — At) + 2if£—At u(X, 1) F~"(kF (1))

—2iF!

=0. (2.28)

n’k?
sin At) F(u
(Zar) Fo

The difference between Eq. (2.27) and (2.28) is in the approximation of the linear
equation

3

U, + 1% Uyyy = 0. (2.29)

The linear part of Eq. (2.28) is exactly satisfied for any solution of Eq. (2.29) {18].
Also it turns out that the linearized stability condition is less restrictive for (2.28)
than for (2.27): 4t/(4x)* < 3/27* ~0.1520 compared to A4t/(4x)* < 1/n* = 0.0323
(for details see [18]).

Since the Fornberg and Whitham scheme is explicit, it is natural to consider
Crank—Nicolson type implicit version, e.g.,

u(X, t +4t) — u(X, t) + 3idin/p{u(X, t + At) F~ ' (kF(u(X, t + 41)))

+u(X, ) F~ (KF(u(X, 1))} — i‘z'i (%) [FV(KFuX, { + A1)

+ F (K Fu(X, 1))} = 0. (2.30)

This scheme (2.30) is unconditionally stable according to linear stability. We make
some remarks about (2.30) in the conclusions.

3. CONCLUSIONS

Various numerical methods are used in order to approximate the KdV equation
(1.1), namely, (i) Zabusky and Kruskal scheme (2.1), (ii) hopscotch method (2.4),
(iii) a scheme due to Goda (2.6), (iv) a proposed local scheme (2.7), (v) a proposed
global scheme (2.16), (vi) a scheme suggested by Kruskal (2.19), (vii) split step
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Fourier method by Tappert (2.22)-(2.24), and (viii) pseudospectral method by
Fornberg and Whitham (2.28).

As in part 1I, our approach for comparison is to (a) fix the accuracy (L) for
computations beginning at =0 and ending at ¢t = T; (b) leave other parameters free
(e.g., 4t, or Ax), and compare the computing time required to attain such accuracy
for various choices of the parameters.

Two sets of initial conditions were studied: (A) 1-soliton solution with different
values of the amplitude, (B) collisions of two solitons with different values of the
parameters. According to this approach we have made the following conclusions:

(1) The scheme of Goda required a long time compared to the other ((i), (ii),
(iv), (vi), (vii), (viii)) schemes.

(2) Zabusky and Kruskal’s scheme was good for low amplitudes, but it needed
more computing time than the other remaining methods ((ii), (iv), (vi), (vii), (viii))
for high amplitudes.

(3) The calculations for the previous two methods; Goda, and
Zabusky-Kruskal, were not carried out for the 1-soliton case with amplitude = 4.
They needed very long computing time.

(4) The Tappert and hopscotch schemes took less computing time than the
previous two schemes. For small amplitudes hopscotch was more efficient than
Tappert, and they behave almost the same for fairly small amplitudes. On the other
hand for relatively high amplitudes the Tappert scheme turned out to be better.

(5) The suggested scheme by Kruskal is in general faster than the previous
schemes ((i), (ii), (iii), (v), (vii)).

(6) The Fornberg and Whitham method is much faster than the suggested
scheme by Kruskal, it is roughly three times faster for small amplitudes and six times
faster for high amplitudes. Also (2.27) was tried, but (2.28) proved to be somewhat
faster. In addition, the implicit version (2.30) was implemented and did not prove to
be faster than (2.28).

(7) The proposed local scheme is the best amongst all the utilized schemes. It
was roughly eight times faster than the suggested scheme by Kruskal. (See remark
below Eq. (2.18)). This certainly shows that the approximation of the nonlinear term
is crucial. Also, it was roughly one and a half times faster than the Fornberg and
Whitham scheme. This despite the fact that the local scheme is only O((4¢)?, (4x)*)
whereas Fornberg and Whitham method is of order O((4¢)?, (4x)?) for all p. These
results suggest that “IST generated” schemes will be good approximations for
equations which are in fact exactly solvable by the IST. The proposed global scheme
was implemented and proved to be faster than some of the utilized schemes, but much
slower than its local version. Since the global scheme is so complicated and
cumbersome, we are not convinced that our methods of implementation were optimal.
Optimizing the implementation of our global scheme will be under further
investigation in the near future. (The following tables and figures exhibit the results).
All the numerical calculations were inspected at every step by using the conserved
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1. Zabusky and Kruskal.
10 2. Goda.
3. Hopscotch.
4. Tappert.
9 5. Kruskal.
6. The proposed local scheme.
8 7.  The proposed global scheme.
8.  Fornberg and Whitham.
7
6
5
4
3
2
1
0 8
1 2 3 4 5 6 78 Method

Fig. 1. Displays the computing time (E) which is required by each utilized method given in Table L.

1-soliton, amplitude = 1.

)
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<16 .
£ £5
5
< s 5
o
£
o
13
12
11 1.  Zabusky and Kruskal.
2.  Goda.
10 3. Hopscotch.
4. Tappert.
9 5. Kruskal.
6. The proposed local scheme.
7. The proposed global scheme.
8 8. Fornberg and Whitham.
7
6
5
4
3
2
1
o .
1 2 3 4 5 6 7 8 Method -

FiG. 2. Displays the computing time (E) which is required by each utilized method given in
Table I1.

1-soliton, amplitude = 2.
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~

min.

min.

Time (min.}*
o

Hopscotch.

Tappert.

Kruskal.

The proposed local scheme.
The proposed global scheme.
Fornberg and Whitham.

14

13

12

11

10 .
9 .
. .
7

6

5

4

3

2

1

0 -

1 2 3 4 5 [ Method

D

*1 unit in time = 2 min.

Fic. 3. Displays the computing time (£) which is required by each utilized method given in
Table II1.

1-soliton, amplitude = 4.

18
— 17
s cwo
£ £F
E 16 £
@
E 15
b
14
13
12
11 1. Zabusky and Kruskal.
2. Goda. .
10 3. Hopscotch,
4, Tappert.
5. Kruskal.
9 6. The proposed local scheme.
7. The proposed global scheme.
8 8. Fornberg and Whitham.
7
6
5
4
3
2
1
0
1 z 3 ) 5 6 7 8 Method

F1G. 4. Displays the computing time (£) which is required by each utilized method given in Table
V.

Two solitons with amplitudes 0.5 and 1.
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very Tong time

Time {min.)*
&

Zabusky and Kruskal.

Goda.

Hopscotch.

Tappert.

Kruskal.

The proposed local scheme.
The proposed global scheme.
Fornberg and Whitham,

DB W

1 2 3 4 5 [3 7 8 Method

*1 ynit in time = 2 min.

FiG. 5. Displays the computing time (E) which is required by each utilized method given in
Table V.

Two solitons with amplitudes 0.5 and 2.5.

quantities | u” dx, and [ (2u® — (u,)?) dx. (Table I-V). The two conserved quantities
were calculated by means of Simpson’s rule. In the finite difference schemes we have
discritized u, using a central difference approximation. In the Fourier methods the
derivatives are calculated using Fourier method. The proposed global scheme is the
only utilized scheme which has an infinite number of conserved quantities, and true
soliton solutions. It is worth mentioning that we calculate the L, error norm and find
it reflects the same conclusions as the L  norm.
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